NumPy TutorialPython NumPy Searching ArraysIntroduction to Python NumPy Searching ArraysPython NumPy Searching ArraysYou can perform various operations to search for specific elements or conditions within arrays. Here are some common functions for searching arrays:Using np.where()The np.where() function returns the indices of elements in an array that satisfy a given condition. It takes a condition as an argument and returns an array of indices where the condition is true.import numpy as nparr = np.array([1, 2, 3, 4, 5])# Find the indices where the elements are greater than 3indices = np.where(arr > 3)print(indices)Output:(array([3, 4]),)Using np.argmax() and np.argmin()The np.argmax() function returns the index of the maximum value in an array, while np.argmin() returns the index of the minimum value.import numpy as nparr = np.array([1, 4, 2, 7, 5])# Find the index of the maximum valuemax_index = np.argmax(arr)print(max_index)# Find the index of the minimum valuemin_index = np.argmin(arr)print(min_index)Output:30Using np.nonzero()The np.nonzero() function returns the indices of non-zero elements in an array.import numpy as nparr = np.array([0, 1, 0, 3, 0, 5])# Find the indices of non-zero elementsindices = np.nonzero(arr)print(indices)Output:(array([1, 3, 5]),)Using np.extract()The np.extract() function returns elements from an array that satisfy a given condition.import numpy as nparr = np.array([1, 2, 3, 4, 5])# Extract elements greater than 3result = np.extract(arr > 3, arr)print(result)Output:[4 5]